The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178655 Triangle which contains the first differences of the Catalan triangle A001263 constructed along rows. 1
 1, 1, -1, 1, 0, -1, 1, 2, -2, -1, 1, 5, 0, -5, -1, 1, 9, 10, -10, -9, -1, 1, 14, 35, 0, -35, -14, -1, 1, 20, 84, 70, -70, -84, -20, -1, 1, 27, 168, 294, 0, -294, -168, -27, -1, 1, 35, 300, 840, 588, -588, -840, -300, -35, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k) = -T(n,n-k), n > 0. T(n,k) = A001263(n,k+1) - A001263(n,k), n > 0. - R. J. Mathar, Jun 16 2015 EXAMPLE Triangle begins   1;   1,   -1;   1,    0,   -1;   1,    2,   -2,   -1;   1,    5,    0,   -5,   -1;   1,    9,   10,  -10,   -9,   -1;   1,   14,   35,    0,  -35,  -14,   -1;   1,   20,   84,   70,  -70,  -84,  -20,   -1;   1,   27,  168,  294,    0, -294, -168,  -27,   -1;   1,   35,  300,  840,  588, -588, -840, -300,  -35,   -1; MATHEMATICA Join[{1}, Table[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial[n, k]^2, {n, 1, 10}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jan 28 2019 *) PROG (PARI) {T(n, k) = if(n==0, 1, ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2)}; for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 28 2019 (MAGMA) [[n le 0 select 1 else ((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 28 2019 (Sage) [1] + [[((n+1)*(n-2*k)/(n*(k+1)*(n-k+1)))* binomial(n, k)^2 for k in (0..n)] for n in (1..10)] # G. C. Greubel, Jan 28 2019 CROSSREFS Cf. A001263, A000007 (row sums). Sequence in context: A331315 A064552 A209543 * A178304 A123585 A145668 Adjacent sequences:  A178652 A178653 A178654 * A178656 A178657 A178658 KEYWORD sign,tabl,easy AUTHOR Roger L. Bagula, Jun 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 21:58 EST 2020. Contains 332295 sequences. (Running on oeis4.)