OFFSET
1,1
COMMENTS
Concatenation of the emirps q (A006567) and their digit-reversed variant yields the sequence q//R(q) = 1331, 1771, 3113, 3773, 7117, 7337, 7997,..
Further division of each term through 11 (in the spirit of A132286) yields the sequence 121, 161, 283, 343, 647, 667, 727, 889, 9791..
If such a term is a palindromic prime (A002385), it joins the sequence.
The sequence is generated by the emirps A006567(i) with i= 7, 10, 12, 14, 15, 17, 45, 59, 60, 63, 72, 77, 115, 139, 143, 280, 289,...
REFERENCES
M. Gardner: Mathematischer Zirkus, Seite 259 ff., Ullstein Berlin-Frankfurt/M.-Wien, 1988
W. Lietzmann: Sonderlinge im Reich der Zahlen, Duemmler, Bonn, 1948
LINKS
Robert Israel, Table of n, a(n) for n = 1..2500
H. Gabai and D. Coogan, On palindromes and palindromic primes, Math. Mag. 42, pp. 252-254, 1969.
EXAMPLE
79 = emirp(7), 97 = emirp(8), 7997 / 11 = 727 = palprime(15) is first term
113 = emirp(10), 311 = emirp(16), 113311 / 11 = 10301 = palprime(21) is 2nd term
14303 = emirp(414), 30341 = emirp(639), 1430330341 / 11 = 130030031 = palprime(1229), 26th term
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 01 2010
STATUS
approved