OFFSET
0,5
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1-x^2/(1-2x^2/(1-(1/4)x^2/(1-10x^2/(1-(9/25)x^2/(1-...))))))) where 1,2,-1/4,10,9/25,... are the x-coordinates of the multiples of z=(0,0) on E:y^2+xy-y=x^3-x^2+x.
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -1, z = -2. - Michael Somos, Aug 06 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..155
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
FORMULA
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>4.
a(n) = -a(-n) for all n in Z.
EXAMPLE
G.f. = x + x^2 - x^3 - 2*x^4 - x^5 + 5*x^6 + 9*x^7 - 8*x^8 + ... - Michael Somos, Sep 19 2018
MATHEMATICA
Join[{0}, RecurrenceTable[{a[1]==a[2]==1, a[3]==-1, a[4]==-2, a[n]==(a[n-1]* a[n-3]+ a[n-2]^2)/a[n-4]}, a, {n, 30}]] (* Harvey P. Dale, Dec 19 2015 *)
PROG
(PARI) {a(n) = my(E, z); E = ellinit( [1, -1, -1, 1, 0]); z = ellpointtoz( E, [0, 0]); round( ellsigma( E, n*z) / ellsigma( E, z)^(n^2))};
(PARI) m=30; v=concat([0, 1, 1, -1, -2], vector(m-5)); for(n=6, m, v[n] = ( -v[n-1]*v[n-3] - 2*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
(Magma) I:=[0, 1, 1, -1, -2]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 06 2014
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
EXTENSIONS
Added missing a(0) = 0. - Michael Somos, Aug 06 2014
STATUS
approved