OFFSET
0,4
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1 - x^2/(1 + x^2/(1 - 4*x^2/(1 - (5/16)*x^2/(1 + (84/25)*x^2/(1 - ... where -1, 4, 5/16, -84/25, ... are the x-coordinates of the multiples of z=(0,0) on E : y^2 + x*y - y = x^3 + 3*x^2 - x.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..158
FORMULA
a(n) = (a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n > 3.
MATHEMATICA
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] -a[n-2]^2)/a[n-4], a[0]==1, a[1] ==1, a[2]==1, a[3]==-4}, a, {n, 0, 30}] (* G. C. Greubel, Jan 29 2019 *)
nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b-c^2)/a}; NestList[nxt, {1, 1, 1, -4}, 30][[All, 1]] (* Harvey P. Dale, Feb 14 2022 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([1, 3, -1, -1, 0]); z=ellpointtoz(E, [0, 0]);
round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))
(PARI) m=30; v=concat([1, 1, 1, -4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] -v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Jan 29 2019
(Magma) I:=[1, 1, 1, -4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) - Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 29 2019
(Sage)
@cached_function
def A178625(n):
if (n==0): return 1
elif (n==1): return 1
elif (n==2): return 1
elif (n==3): return -4
[A178625(n) for n in range(30)] # G. C. Greubel, Jan 29 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
STATUS
approved