login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178621 A (1, 2) Somos-4 sequence associated to the elliptic curve E: y^2 + x*y - y = x^3 - x. 1
1, 1, -2, 5, 13, 24, -229, -365, 7394, -59449, -572233, -7773360, 151071097, -578687351, -87627413666, 1616831255645, 95461592201461, 5420484489890376, -308006807300556157, 18159275356643111275, 3018684797307268036418 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f.

1/(1 - x/(1 - 2x^2/(1 + (5/4)x^2/(1 - (26/25)x^2/(1 + (120/169)x^2/(1 - ... where

2, -5/4, 26/25, -120/169 are the x-coordinates of the multiples of z=(0,0) on E.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..142 (offset adapted by Georg Fischer, Jan 31 2019).

FORMULA

a(n) = (a(n-1)*a(n-3) + 2*a(n-2)^2)/a(n-4), n > 4.

a(n) = -a(-n), a(n+3)*a(n-2) = -2*a(n+2)*a(n-1) - 5*a(n+1)*a(n) for all n in Z. - Michael Somos, Sep 19 2018

EXAMPLE

G.f. = x + x^2 - 2*x^3 + 5*x^4 + 13*x^5 + 24*x^6 - 365*x^7 + ... - Michael Somos, Sep 19 2018

MATHEMATICA

RecurrenceTable[{a[1]==a[2]==1, a[3]==-2, a[4]==5, a[n]==(a[n-1]a[n-3]+ 2a[n-2]^2)/a[n-4]}, a[n], {n, 30}] (* Harvey P. Dale, Sep 30 2011 *)

PROG

(PARI) a(n)=local(E, z); E=ellinit([1, 0, -1, -1, 0]); z=ellpointtoz(E, [0, 0]); round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2));

(PARI) m=30; v=concat([1, 1, -2, 5], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 2*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018

(Magma) I:=[1, 1, -2, 5]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018

CROSSREFS

Sequence in context: A106009 A194552 A079780 * A309230 A048871 A324702

Adjacent sequences: A178618 A178619 A178620 * A178622 A178623 A178624

KEYWORD

easy,sign

AUTHOR

Paul Barry, May 31 2010

EXTENSIONS

Changed offset to 1 by Michael Somos, Sep 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 12:15 EST 2022. Contains 358424 sequences. (Running on oeis4.)