OFFSET
1,3
COMMENTS
a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f.
1/(1 - x/(1 - 2x^2/(1 + (5/4)x^2/(1 - (26/25)x^2/(1 + (120/169)x^2/(1 - ... where
2, -5/4, 26/25, -120/169 are the x-coordinates of the multiples of z=(0,0) on E.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..142 (offset adapted by Georg Fischer, Jan 31 2019).
FORMULA
a(n) = (a(n-1)*a(n-3) + 2*a(n-2)^2)/a(n-4), n > 4.
a(n) = -a(-n), a(n+3)*a(n-2) = -2*a(n+2)*a(n-1) - 5*a(n+1)*a(n) for all n in Z. - Michael Somos, Sep 19 2018
EXAMPLE
G.f. = x + x^2 - 2*x^3 + 5*x^4 + 13*x^5 + 24*x^6 - 365*x^7 + ... - Michael Somos, Sep 19 2018
MATHEMATICA
RecurrenceTable[{a[1]==a[2]==1, a[3]==-2, a[4]==5, a[n]==(a[n-1]a[n-3]+ 2a[n-2]^2)/a[n-4]}, a[n], {n, 30}] (* Harvey P. Dale, Sep 30 2011 *)
PROG
(PARI) a(n)=local(E, z); E=ellinit([1, 0, -1, -1, 0]); z=ellpointtoz(E, [0, 0]); round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2));
(PARI) m=30; v=concat([1, 1, -2, 5], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] + 2*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
(Magma) I:=[1, 1, -2, 5]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + 2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 31 2010
EXTENSIONS
Changed offset to 1 by Michael Somos, Sep 19 2018
STATUS
approved