

A178483


For n=1,2,... list all products of the first n primes raised to some nonnegative power less than n.


4



1, 1, 2, 3, 6, 1, 2, 4, 3, 6, 12, 9, 18, 36, 5, 10, 20, 15, 30, 60, 45, 90, 180, 25, 50, 100, 75, 150, 300, 225, 450, 900, 1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72, 27, 54, 108, 216, 5, 10, 20, 40, 15, 30, 60, 120, 45, 90, 180, 360, 135, 270, 540, 1080, 25, 50, 100, 200, 75, 150
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Alternate construction: For n=1,2,... write all strings of length n using the first n symbols of an alphabet (a; aa,ab,ba,bb; aaa,aab,aac, aba,...), then code / interpret them as "positional" notation of exponents (a=0, b=1, ...) of primes (last digit = least prime), e.g.: bac => [1,0,2] => 5^1 3^0 2^2.
Obviously every natural numbers appears infinitely often (even after any other natural number) in this sequence. Thus any sequence of positive terms is a subsequence of this one.
A178484 is a more condensed version of this sequence.


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000


EXAMPLE

The sequence begins: a(1)=2^0; a(2)=2^0 3^0, a(3)=2^1 3^0, a(4)=2^0 3^1, a(5)=2^1 3^1;
a(6,...)=2^0 3^0 5^0, 2^1 3^0 5^0, 2^2 3^0 5^0,
________ 2^0 3^1 5^0, 2^1 3^1 5^0, 2^2 3^1 5^0,
________ 2^0 3^2 5^0, 2^1 3^2 5^0, 2^2 3^2 5^0,
________ 2^0 3^0 5^1, 2^1 3^0 5^1, 2^2 3^0 5^1,
________ 2^0 3^1 5^1, 2^1 3^1 5^1, 2^2 3^1 5^1,
________ 2^0 3^2 5^1, 2^1 3^2 5^1, 2^2 3^2 5^1,
________ 2^0 3^0 5^2, 2^1 3^0 5^2, 2^2 3^0 5^2,
________ 2^0 3^1 5^2, 2^1 3^1 5^2, 2^2 3^1 5^2,
________ 2^0 3^2 5^2, 2^1 3^2 5^2, 2^2 3^2 5^2,...


MATHEMATICA

{1}~Join~Flatten@Table[Times @@ (Prime@Range@n^Reverse@PadLeft[ IntegerDigits[#, n], n]) & /@ (Range[n^n]  1), {n, 2, 4}] (* Ivan Neretin, May 02 2019 *)


PROG

(PARI) for( L=1, 4, forvec( v=vector(L, i, [0, L1]), print1( prod( j=1, L, prime(j)^v[Lj+1] )", ")))


CROSSREFS

Cf. A178480, A178484.
Sequence in context: A107409 A268603 A226871 * A133031 A275732 A200594
Adjacent sequences: A178480 A178481 A178482 * A178484 A178485 A178486


KEYWORD

nonn


AUTHOR

M. F. Hasler, May 31 2010


STATUS

approved



