OFFSET
1,1
COMMENTS
This finite sequence contains 6!=720 terms.
If individual digits are be split up into separate terms, we get a subsequence of A030298.
It would be interesting to conceive simple and/or efficient functions which yield (a) the n-th term of this sequence: f(n)=a(n), (b) for a given term, the subsequent one: f(a(n)) = a(1 + (n mod 6!)).
The expression a(n+6) - a(n) takes only 18 different values for n = 1..6!-6.
An efficient procedure for generating the n-th term of this sequence can be found at A178475. - Nathaniel Johnston, May 19 2011
From Hieronymus Fischer, Feb 13 2013: (Start)
The sum of all terms as decimal numbers is 279999720.
General formula for the sum of all terms (interpreted as decimal permutational numbers with exactly d different digits from the range 1..d < 10): sum = (d+1)!*(10^d-1)/18.
If the terms are interpreted as base-7 numbers the sum is 49412160.
General formula for the sum of all terms of the corresponding sequence of base-p permutational numbers (numbers with exactly p-1 different digits excluding the zero digit): sum = (p-2)!*(p^p-p)/2. (End)
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..720 (full sequence)
FORMULA
MATHEMATICA
Take[FromDigits/@Permutations[Range[6]], 40] (* Harvey P. Dale, Jun 05 2012 *)
PROG
CROSSREFS
KEYWORD
fini,full,easy,nonn,base
AUTHOR
M. F. Hasler, May 28 2010
STATUS
approved