login
A178383
Primes p such that q*p+-Mod(p,q) are primes, for q=3.
5
5, 23, 167, 257, 293, 797, 887, 953, 1013, 1283, 1307, 1667, 1913, 2003, 2333, 2897, 2927, 3533, 4013, 4877, 4943, 5087, 5147, 5417, 5483, 6173, 6473, 6803, 6827, 6917, 7127, 7187, 7523, 7547, 7673, 7853, 7877, 8147, 8447, 8513, 9623, 9857, 10037
OFFSET
1,1
COMMENTS
3*5=15+-2->primes,..
LINKS
MATHEMATICA
q=3; lst={}; Do[p=Prime[n]; If[PrimeQ[q*p-Mod[p, q]]&&PrimeQ[q*p+Mod[p, q]], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[1300]], AllTrue[3#+{Mod[#, 3], -Mod[#, 3]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 01 2017 *)
CROSSREFS
Sequence in context: A308362 A054749 A107204 * A167576 A306180 A308443
KEYWORD
nonn
AUTHOR
STATUS
approved