login
A178371
The smallest prime p of the form j^3 + prime(n), such that the sum-of-digits of p equals prime(n).
0
2, 3, 5, 7, 227, 229, 13841, 1747, 729023, 474581, 46687, 1259749, 37933097, 6434899, 14886983, 485587709, 2985984059, 2526569989, 56888939803, 60976889927, 60976889929, 879768685447, 8296386686867, 22597978779737
OFFSET
1,1
EXAMPLE
n=1: 0^3 + prime(1) = 0+2 = 2.
n=2: 0^3 + prime(2) = 0+3 = 3.
n=3: 0^3 + prime(3) = 0+5 = 5. Next candidate with j>0 would be 6^3 + 7 = 223.
n=4: 0^3 + prime(4) = 0+7 = 7.
n=5: 6^3 + 11 = 227 = prime(49).
n=6: 6^3 + 13 = 229 = prime(50).
n=7: 24^3 + 17 = 13841 = prime(1636).
n=8: 12^3 + 19 = 1747 = prime(272).
n=9: 90^3 + 23 = 729023 = prime(58716).
n=10: 78^3 + 29 = 474581 = prime(39587).
n=11: 36^3 + 31 = 46687 = prime(4825).
n=12: 108^3 + 37 = 1259749 = prime(97168).
n=13: 336^3 + 41 = 37933097 = prime(2315164).
n=14: 186^3 + 43 = 6434899 = prime(440614).
n=15: 246^3 + 47 = 14886983 = prime(963902).
n=16: 786^3 + 53 = 485587709 = prime(25635800).
n=17: 1440^3 + 59 = 2985984059 = prime(143807568).
n=18: 1362^3 + 61 = 2526569989 = prime(122671100).
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 26 2010
EXTENSIONS
Redefined the variables in the definition - R. J. Mathar, Jun 07 2010
a(19)-a(24) from Donovan Johnson, Aug 09 2010
STATUS
approved