|
|
A178339
|
|
Primes p such that the sum of decimal digits of p divides the product of decimal digits of p+1 and that product is nonzero.
|
|
1
|
|
|
11, 13, 17, 211, 233, 277, 367, 431, 457, 523, 541, 547, 587, 727, 743, 761, 853, 857, 1153, 1223, 1373, 1447, 1483, 1531, 1571, 1627, 1663, 1733, 1861, 2141, 2213, 2251, 2273, 2293, 2347, 2383, 2411, 2437, 2473, 2521, 2617, 2657, 2741, 2833, 2851, 3221, 3371
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
2+3+3 = 8 divides 2*3*4 = 24, so 233 is a member.
|
|
MAPLE
|
A178339 := proc(n) option remember: local p, q: if(n=1)then return 11: fi: p:=procname(n-1): do p:=nextprime(p): q:=mul(d, d=convert(p+1, base, 10)): if(q>0 and q mod add(d, d=convert(p, base, 10)) = 0)then return p: fi: od: end: seq(A178339(n), n=1..47); # Nathaniel Johnston, May 27 2011
|
|
MATHEMATICA
|
fQ[n_] := Block[{s = Plus @@ IntegerDigits@n, p = Times @@ IntegerDigits[n + 1]}, Mod[p, s] == 0 && p > 0]; Select[ Prime@ Range@ 250, fQ@# &]; Select[ Prime@ Range@ 500, fQ@# &]
|
|
CROSSREFS
|
Sequence in context: A098031 A179208 A098423 * A088561 A211457 A154523
Adjacent sequences: A178336 A178337 A178338 * A178340 A178341 A178342
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Giovanni Teofilatto, May 25 2010
|
|
EXTENSIONS
|
Corrected and extended by Robert G. Wilson v, Jun 05 2010
Name corrected by Nathaniel Johnston, May 27 2011
|
|
STATUS
|
approved
|
|
|
|