login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178301 Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0<=k<=n. 4
1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Antidiagonal sums are given by A113682. - Johannes W. Meijer, Mar 24 2013

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n,k) = A007318(n,k) * A178300(n+1,k+1).

From Peter Bala, Jun 18 2015: (Start)

n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k+1,n+1)*x^k = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+1,k+1)*binomial(n+k+1,n+1)*(1 + x)^k.

Recurrence: (2*n - 1)*(n + 1)*R(n,x) = 2*(4*n^2*x + 2*n^2 - x - 1)*R(n-1,x) - (2*n + 1)(n - 1)*R(n-2,x) with R(0,x) = 1, R(1,x) = 1 + 3*x.

A182626(n) = -R(n-1,-2) for n >= 1. (End)

From Peter Bala, Jul 20 2015: (Start)

n-th row polynomial R(n,x) = Jacobi_P(n,0,1,2*x + 1).

(1 + x)*R(n,x) gives the row polynomials of A123160.

(End)

EXAMPLE

1;

1,3;

1,8,10;

1,15,45,35;

1,24,126,224,126;

1,35,280,840,1050,462;

1,48,540,2400,4950,4752,1716;

1,63,945,5775,17325,27027,21021,6435;

MAPLE

A178301 := proc(n, k)

        binomial(n, k)*binomial(n+k+1, n+1) ;

end proc: # R. J. Mathar, Mar 24 2013

MATHEMATICA

Flatten[Table[Binomial[n, k]Binomial[n+k+1, n+1], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Aug 23 2014 *)

CROSSREFS

Cf. A007318, A047781 (row sums), A178300, A182626, A123160.

Sequence in context: A008298 A039692 A071815 * A120236 A049760 A019146

Adjacent sequences:  A178298 A178299 A178300 * A178302 A178303 A178304

KEYWORD

easy,nonn,tabl

AUTHOR

Alford Arnold, May 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 05:11 EST 2016. Contains 278748 sequences.