%I
%S 0,4,44,376,2960,22624,171584,1303936,9969920,76793344
%N Number of collinear point triples in a 4 X 4 X 4 X... ndimensional cubic grid
%H R. J. Mathar, <a href="/A178294/a178294.pdf">Points on a line in the finite ddimensional simple cubic lattice</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (18, 104, 192) conjectured.
%F Conjecture: a(n) = 8^n/23*4^n/2+6^n. a(n)= +18*a(n1) 104*a(n2) +192*a(n3). G.f.: 4*x*(1+7*x)/((6*x1)*(8*x1)*(4*x1)). [_R. J. Mathar_, May 24 2010]
%Y Cf. A005059.
%K nonn
%O 0,2
%A _R. H. Hardin_, suggested by R. J. Mathar in the Sequence Fans Mailing List, May 24 2010
