This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178249 Table T(n,k) counts the involutions of n with longest increasing contiguous subsequence of length k. 1
 1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 14, 8, 2, 1, 1, 37, 27, 8, 2, 1, 1, 96, 94, 30, 8, 2, 1, 1, 270, 338, 114, 30, 8, 2, 1, 1, 777, 1237, 446, 118, 30, 8, 2, 1, 1, 2370, 4684, 1809, 473, 118, 30, 8, 2, 1, 1, 7450, 18142, 7502, 1964, 478, 118, 30, 8, 2, 1, 1, 24485, 72524, 32093, 8414, 1998, 478, 118, 30, 8, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Reverse of rows converges to 1,2,8,30,118,478,2004,8666,.. LINKS EXAMPLE T(4,2) = 6 because the 6 involutions with longest increasing contiguous subsequence lengths equal to 2 are: 1324, 1432, 2143, 3214, 3412, 4231. Table starts: 1; 1,   1; 1,   2,   1; 1,   6,   2,   1; 1,  14,   8,   2,  1; 1,  37,  27,   8,  2, 1; 1,  96,  94,  30,  8, 2, 1; 1, 270, 338, 114, 30, 8, 2, 1; MATHEMATICA (* first do *) Needs["Combinatorica`"] (* then *) maxISS[perm_List] := Max[0, (Max @@ (Length[#1]*Sign[First[#1]] & ) /@ Split[Sign[Rest[#1] - Drop[#1, -1]]] & )[perm]]; classMaxISS[par_?PartitionQ]:=Count[ maxISS/@( TableauxToPermutation[FirstLexicographicTableau[par], #]&/@Tableaux[par]  ) , #]&/@(-1+Range[ Tr[par] ]); Table[Apply[Plus, classMaxISS/@Partitions[n]], {n, 2, 6}]; CROSSREFS Cf. A008304; row sums are A000085; A047884 removes the contiguity requirement. Sequence in context: A265315 A179380 A107106 * A119502 A142156 A136707 Adjacent sequences:  A178246 A178247 A178248 * A178250 A178251 A178252 KEYWORD nonn,tabl AUTHOR Wouter Meeussen, Dec 20 2010 EXTENSIONS Definition corrected by Wouter Meeussen, Dec 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 20:41 EDT 2019. Contains 326196 sequences. (Running on oeis4.)