login
A178150
Primes p with digital sum dividing p+1.
1
11, 19, 31, 71, 79, 101, 103, 109, 167, 211, 223, 263, 293, 337, 367, 379, 419, 431, 461, 479, 503, 571, 601, 659, 769, 839, 967, 1009, 1039, 1049, 1087, 1151, 1223, 1231, 1427, 1451, 1511, 1553, 1559, 1663, 1699, 1741, 1747, 1759, 1931, 1951, 2011, 2089
OFFSET
1,1
COMMENTS
Is the digit sum of each term even?
LINKS
EXAMPLE
223 has digit sum 7, which divides 224. - D. S. McNeil, May 23 2010
MAPLE
read(transforms): A178150 := proc(n) option remember: local p: if(n=1)then return 11: fi: p:=procname(n-1): do p:=nextprime(p): if((p+1) mod digsum(p) = 0)then return p: fi: od: end: seq(A178150(n), n=1..68); # Nathaniel Johnston, May 28 2011
MATHEMATICA
Select[Prime[Range[400]], Mod[# + 1, Total[IntegerDigits[#]]] == 0 &] (* Vincenzo Librandi, Dec 21 2018 *)
PROG
(Magma) [n: n in PrimesUpTo(3000)|IsIntegral((n+1)/&+Intseq(n))]; // Marius A. Burtea, Dec 17 2018
(PARI) is(n) = isprime(n) && !((n+1) % vecsum(digits(n))) \\ David A. Corneth, Dec 18 2018
CROSSREFS
Subsequence of primes of A144980.
Sequence in context: A272550 A122869 A106535 * A214784 A205798 A233388
KEYWORD
nonn,easy,base
AUTHOR
Giovanni Teofilatto, May 21 2010
EXTENSIONS
Extended by D. S. McNeil, May 23 2010
STATUS
approved