OFFSET
1,6
COMMENTS
The sequence is periodic with period {0 1 1 1 1 2 0 1 1 2 0 2 0 1 2 1 0 2 0 2 1 1 0 2 1 1 1 1 0 3} of length 30. There are 26 coincidences on the interval [1,30] with A156542.
LINKS
Vladimir Shevelev, A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function sigma_x(n), arXiv:0903.1743 [math.NT], 2009.
Index entries for linear recurrences with constant coefficients, signature (-2,-2,-1,0,1,2,2,1).
FORMULA
a(n) = a(n-2) + a(n-3) - a(n-7) - a(n-8) + a(n-10), a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 1, a(5) = 1, a(6) = 2, a(7) = 0, a(8) = 1, a(9) = 1, a(10) = 2.
G.f.: -x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1) / ((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Mar 13 2013
From Amiram Eldar, Sep 16 2023:
Additive with a(p^e) = 1 if p <= 5, and 0 otherwise.
a(n) = A001221(gcd(n, 30)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 31/30. (End)
MATHEMATICA
Rest@ CoefficientList[Series[-x^2*(3*x^6 + 6*x^5 + 7*x^4 + 6*x^3 + 5*x^2 + 3*x + 1)/((x - 1)*(x + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* G. C. Greubel, May 16 2017 *)
LinearRecurrence[{-2, -2, -1, 0, 1, 2, 2, 1}, {0, 1, 1, 1, 1, 2, 0, 1}, 120] (* Harvey P. Dale, Sep 29 2021 *)
a[n_] := PrimeNu[GCD[n, 30]]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(-x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1)/((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)))) \\ G. C. Greubel, May 16 2017
(PARI) a(n) = omega(gcd(n, 30)); \\ Amiram Eldar, Sep 16 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, May 21 2010
EXTENSIONS
Name edited by Amiram Eldar, Sep 16 2023
STATUS
approved