login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178141 Period 6: repeat [4, -1, 2, -4, 1, 2]. 2
4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Differences of the period 6: repeat [1, 5, 4, 6, 2, 3] (A070365).

LINKS

Table of n, a(n) for n=0..77.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

Mix A153727(n+1) with -A153727(n).

a(n) = (1/6)*{-6*(n mod 6)+3*[(n+1) mod 6]-5*[(n+2) mod 6]+6*[(n+3) mod 6]-3*[(n+4) mod 6]+5*[(n+5) mod 6]}. [Paolo P. Lava, May 24 2010]

From Wesley Ivan Hurt, Jun 23 2016: (Start)

G.f.: (4-x+2*x^2-4*x^3+x^4+2*x^5)/(1-x^6).

a(n) = a(n-6) for n>5.

a(n) = (2 + 5*cos(n*Pi) + 7*cos(n*Pi/3) - 2*cos(2*n*Pi/3) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/3. (End)

MAPLE

A178141:=n->[4, -1, 2, -4, 1, 2][(n mod 6)+1]: seq(A178141(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016

MATHEMATICA

PadRight[{}, 100, {4, -1, 2, -4, 1, 2}] (* Wesley Ivan Hurt, Jun 23 2016 *)

PROG

(PARI) a(n)=[1, 5, 4, 6, 2, 3][n%5+1] \\ Charles R Greathouse IV, Jun 02 2011

(MAGMA) &cat [[4, -1, 2, -4, 1, 2]^^20]; // Wesley Ivan Hurt, Jun 23 2016

CROSSREFS

Cf. A069705, A070365, A132954, A153727.

Sequence in context: A072033 A100353 A080508 * A063987 A236269 A010126

Adjacent sequences:  A178138 A178139 A178140 * A178142 A178143 A178144

KEYWORD

sign,easy,less

AUTHOR

Paul Curtz, May 21 2010

EXTENSIONS

New name from Wesley Ivan Hurt, Jun 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 08:12 EST 2020. Contains 331337 sequences. (Running on oeis4.)