login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178134 Sum_{m=0..(n-1)/2} A176263(n-m-1, m). 1
0, 1, 1, 2, -3, -2, -32, -81, -311, -810, -2515, -6864, -19944, -55043, -156023, -433522, -1217427, -3391226, -9488456, -26462205, -73933535, -206293134, -576040339, -1607642688, -4488069168, -12526662167, -34967630447 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The limiting ratio is (alternating) A222134, 5 times a root of the polynomial 5x^2+x-1 in the denominator of the g.f.

LINKS

Table of n, a(n) for n=0..26.

Index entries for linear recurrences with constant coefficients, signature (1,7,-2,-6,-4,-25,5,25).

FORMULA

G.f. -x*(1-6*x^2-10*x^3-5*x^4+5*x^5) / ( (x-1)*(1+x)*(5*x^2+x-1)*(5*x^4+x^2-1) ). - R. J. Mathar, Nov 05 2012

MAPLE

A178134 := proc(n)

    add( A176263(n-m-1, m), m=0..(n-1)/2) ;

end proc: # R. J. Mathar, May 15 2016

MATHEMATICA

Clear[a, f, a0, t]

f[0, a_] := 0; f[1, a_] := 1;

f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];

t[n_, m_, a_] := f[m + 1, a] + f[n + 1 - m, a] - f[n + 1, a];

a = 5;

a0[n_] := Sum[t[n - m - 1, m, a], {m, 0, Floor[(n - 1)/2]}];

Table[a0[n], {n, 0, 30}]

PROG

(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1; 25, 5, -25, -4, -6, -2, 7, 1]^n*[0; 1; 1; 2; -3; -2; -32; -81])[1, 1] \\ Charles R Greathouse IV, May 15 2016

CROSSREFS

Cf. A000800, A004148.

Sequence in context: A136454 A025522 A019228 * A075121 A075108 A265590

Adjacent sequences:  A178131 A178132 A178133 * A178135 A178136 A178137

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, May 20 2010

EXTENSIONS

New name from R. J. Mathar, May 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 03:54 EST 2016. Contains 278698 sequences.