This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178058 Number of 1's in the Gray code for binomial(n,m). 2
 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 3, 4, 6, 2, 2, 6, 4, 3, 1, 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: 1, 2, 4, 4, 8, 16, 12, 20, 18, 32, 38,.... LINKS Eric W. Weisstein, Gray code FORMULA T(n,m) = A005811(binomial(n,m)), 0<=m<=n. EXAMPLE 1; 1, 1; 1, 2, 1; 1, 1, 1, 1; 1, 2, 2, 2, 1; 1, 3, 4, 4, 3, 1; 1, 2, 1, 4, 1, 2, 1; 1, 1, 5, 3, 3, 5, 1, 1; 1, 2, 2, 2, 4, 2, 2, 2, 1; 1, 3, 4, 6, 2, 2, 6, 4, 3, 1; 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1; MAPLE A178058 := proc(n, m)     A005811(binomial(n, m)) ; end proc: # R. J. Mathar, Mar 10 2015 MATHEMATICA GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ] Table[Table[Apply[Plus, GrayCodeList[Binomial[n, m]]], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Cf. A143214. Sequence in context: A228053 A031262 A047072 * A260971 A053258 A053632 Adjacent sequences:  A178055 A178056 A178057 * A178059 A178060 A178061 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, May 18 2010 EXTENSIONS Edited by R. J. Mathar, Mar 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 07:01 EST 2018. Contains 317279 sequences. (Running on oeis4.)