login
A178048
Triangle T(n, m) = ( |-A008292(n+1,m+1)^2 + 2*binomial(n, m)^2| + A008292(n+1,m+1)*binomial(n, m) )/2 read by rows.
1
1, 1, 1, 1, 8, 1, 1, 68, 68, 1, 1, 374, 2340, 374, 1, 1, 1742, 47012, 47012, 1742, 1, 1, 7524, 717948, 2942288, 717948, 7524, 1, 1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1, 1, 127946, 106900560, 3895086794, 12203119800, 3895086794
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 10, 138, 3090, 97510, 4393234, 263079138, 20207350402, 1926722077422, 223339810806978, ...
FORMULA
T(n, m) = T(n,n-m).
EXAMPLE
The triangle starts in row n=0 with columns 0 <= m <= n as
1;
1, 1;
1, 8, 1;
1, 68, 68, 1;
1, 374, 2340, 374, 1;
1, 1742, 47012, 47012, 1742, 1;
1, 7524, 717948, 2942288, 717948, 7524, 1;
1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1;
1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1};
MAPLE
A178048 := proc(n, m) binomial(n, m)*A008292(n+1, m+1)+abs( -A008292(n+1, m+1)^2+2*binomial(n, m)^2) ; %/2; end proc:
seq(seq(A178048(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Nov 26 2010
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_] = (Abs[2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2] + Binomial[n, m]*Eulerian[n + 1, m])/2;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A203443 A176642 A172346 * A174728 A015121 A156766
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 18 2010
EXTENSIONS
Definition corrected by R. J. Mathar, Nov 26 2010
STATUS
approved