login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178030 Array read by antidiagonals: T(0,m)=2, T(1,m)=1, T(n,m)=A000032(n) and recursively T(n,m)=( T(n-1,m)^2 + (4*m + 1)*(-1)^n) / T(n-2, m), n>=0, m>=1. 1
2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 7, 16, 7, 1, 2, 11, 53, 36, 9, 1, 2, 18, 175, 187, 64, 11, 1, 2, 29, 578, 971, 457, 100, 13, 1, 2, 47, 1909, 5042, 3263, 911, 144, 15, 1, 2, 76, 6305, 26181, 23298, 8299, 1597, 196, 17, 1, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Antidiaognal sums are 2, 3, 6, 12, 33, 112, 458, 2151, 11334, 65972,....

LINKS

Table of n, a(n) for n=0..54.

EXAMPLE

  2,   2,   2,   2,   2,   2,   2,   2,   2,   2, ,...

1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...

3,   5,   7,   9,  11,  13,  15,  17,  19,  21,...

4,  16,  36,  64, 100, 144, 196, 256, 324, 400,...

7,  53, 187, 457, 911,1597,2563,3857,5527,7621,...

MAPLE

A178030 := proc(n, k)

    if k = 0 then

        A000032(n);

    elif n = 0 then

        2 ;

    elif n = 1 then

        1 ;

    else

        (procname(n-1, k)^2+(4*k+1)*(-1)^n)/procname(n-2, k) ;

    end if;

end proc: # R. J. Mathar, May 15 2016

MATHEMATICA

f[0, a_] := 2; f[1, a_] := 1;

f[n_, a_] := f[n, a] = (f[n - 1, a]^2 - (4*a + 1)*(-1)^(n - 1))/f[n - 2, a];

a = Table[Table[f[n, m], {n, 0, 10}], {m, 1, 11}];

Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];

Flatten[%]

CROSSREFS

Cf. A000032.

Sequence in context: A268956 A208515 A286880 * A131879 A172288 A134628

Adjacent sequences:  A178027 A178028 A178029 * A178031 A178032 A178033

KEYWORD

nonn,tabl,easy

AUTHOR

Roger L. Bagula, May 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 16:52 EDT 2020. Contains 334787 sequences. (Running on oeis4.)