The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177899 Nonsquarefree numbers that are not in A177880. 1
 8, 16, 24, 27, 40, 48, 54, 56, 80, 81, 88, 104, 112, 120, 125, 135, 136, 152, 162, 168, 176, 184, 189, 208, 216, 232, 240, 248, 250, 264, 270, 272, 280, 296, 297, 304, 312, 328, 336, 343, 344, 351, 368, 375, 376, 378, 405, 408, 424, 432, 440, 456, 459, 464, 472, 488, 496, 512, 513, 520, 528, 536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA Let B(x) be the counting function for terms not exceeding x. Then for x tends to infinity, B(x)=C*x+o(x^(0.5+eps), where C = Product_{i=p^(3^k) with prime p and k>=0}(1-1/(i^2+i+1)) - 1/zeta(2). MAPLE isA005836 := proc(n) convert(convert(n, base, 3), set) intersect {2} ; % = {} ; end proc: isA177880 := proc(n) local f; for f in ifactors(n)[2]  do if not isA005836(op(2, f)) then return true; end if;  end do: return false; end proc: isA177899 := proc(n) not numtheory[issqrfree](n) and not isA177880(n) ; end proc: for n from 1 to 1000 do if isA177899(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Dec 20 2010 MATHEMATICA Select[Range[500], AnyTrue[(e = FactorInteger[#][[;; , 2]]), #1 > 1 &] && AllTrue[e, DigitCount[#1, 3, 2] == 0 &] &] (* Amiram Eldar, Aug 31 2020 *) CROSSREFS Cf. A013929, A177880. Sequence in context: A137845 A046099 A033859 * A246311 A244371 A144566 Adjacent sequences:  A177896 A177897 A177898 * A177900 A177901 A177902 KEYWORD nonn AUTHOR Vladimir Shevelev, Dec 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 19:43 EDT 2021. Contains 342977 sequences. (Running on oeis4.)