login
P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.
9

%I #34 Apr 07 2021 02:49:57

%S 1,2,1,3,3,1,4,5,7,1,5,7,17,43,1,6,9,31,257,1807,1,7,11,49,871,65537,

%T 3263443,1,8,13,71,2209,756031,4294967297,10650056950807,1,9,15,97,

%U 4691,4870849,571580604871,18446744073709551617,113423713055421844361000443,1

%N P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A177888/b177888.txt">Antidiagonals n = 0..13, flattened</a>

%H A. V. Aho and N. J. A. Sloane, <a href="https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, <a href="http://neilsloane.com/doc/doubly.html">alternative link</a>.

%e Square array P_n(k) begins:

%e 1, 2, 3, 4, 5, 6, 7, 8, ...

%e 1, 3, 5, 7, 9, 11, 13, 15, ...

%e 1, 7, 17, 31, 49, 71, 97, 127, ...

%e 1, 43, 257, 871, 2209, 4691, 8833, 15247, ...

%e 1, 1807, 65537, 756031, 4870849, ...

%e 1, 3263443, 4294967297, ...

%e 1, 10650056950807, ...

%p p:= proc(n) option remember;

%p z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))

%p end:

%p seq(seq(p(n)(d-n), n=0..d), d=0..8);

%t p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from Maple *)

%Y Columns k=0-10 give: A000012, A000058(n+1), A000215, A000289(n+1), A000324(n+1), A001543(n+1), A001544(n+1), A067686, A110360(n+1), A110368(n+1), A110383(n+1).

%Y Rows n=0-2 give: A000027(k+1), A005408, A056220(k+1).

%Y Main diagonal gives A252730.

%Y Coefficients of P_n(z) give: A177701.

%K nonn,tabl

%O 0,2

%A _Alois P. Heinz_, Dec 14 2010