OFFSET
1,1
COMMENTS
The values of k are 3, 5, 7, 13, ..., the odd Mersenne prime exponents A000043.
The larger terms can be computed by combining techniques from both integer and real arithmetic. The values of k for which A003010(k-2) is divisible by 2^k-1 are found from computing A003010 recursively mod 2^k-1. Unfortunately this gives no information on the number of decimal digits of A003010(k-2), i.e. A177874(k-2). To determine this, we use arbitrary-precision interval arithmetic -- in which we quickly lose information about divisibility -- to place bounds on the size of A003010(k-2) and find d such that 10^(d-1) <= A003010(k-2) < 10^d. - D. S. McNeil, Dec 14 2010
EXAMPLE
MATHEMATICA
a=Sqrt[6]; Reap[Do[a=a^2-2; If[Mod[a, 2^(n+1)-1]==0, Sow[Length[IntegerDigits[a]]]], {n, 26}]][[2, 1]]
PROG
(Magma) T:=[ n eq 1 select 4 else Self(n-1)^2-2: n in [1..24] ]; a003010:=func< n | T[n+1] >; a177874:=func< n | #Intseq(a003010(n)) >; [ a177874(n): n in [0..#T-1] | a003010(n) mod (2^(n+2)-1) eq 0];
CROSSREFS
KEYWORD
nonn,base
AUTHOR
G. L. Honaker, Jr., Dec 13 2010
EXTENSIONS
a(7)-a(11) from D. S. McNeil, Dec 13 2010
STATUS
approved