

A177863


Product modulo p of the quadratic nonresidues of p, where p = prime(n).


2



1, 2, 1, 6, 10, 1, 1, 18, 22, 1, 30, 1, 1, 42, 46, 1, 58, 1, 66, 70, 1, 78, 82, 1, 1, 1, 102, 106, 1, 1, 126, 130, 1, 138, 1, 150, 1, 162, 166, 1, 178, 1, 190, 1, 1, 198, 210, 222, 226, 1, 1, 238, 1, 250, 1, 262, 1, 270, 1, 1, 282, 1, 306, 310, 1, 1, 330, 1, 346, 1, 1, 358, 366, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) == (1)^((p1)/2) (mod p), if p = prime(n) is odd.
a(n)*A163366(n) == 1 (mod prime(n)), by Wilson's theorem.


REFERENCES

CarlErik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.behandl. 11 (1971) 389398.


LINKS

Table of n, a(n) for n=1..74.
Rahul Gupta, Algorithmic Number Theory, Section 24.5


FORMULA

a(n) = A177861(n) modulo prime(n).


EXAMPLE

a(1) = 1 = the empty product, because there are no quadratic nonresidues of prime(1) = 2.
a(4) = 6 because the quadratic nonresidues of prime(4) = 7 are 3, 5, and 6, and 3*5*6 = 90 == 6 (mod 7).


MATHEMATICA

Table[Mod[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n]  1}], 1]]], Prime[n]], {n, 1, 80}]


CROSSREFS

Cf. A177861 Product of the quadratic nonresidues of prime(n), A163366 Product modulo p of the quadratic residues of p, where p = prime(n).
Sequence in context: A276664 A160565 A025252 * A193601 A157402 A069114
Adjacent sequences: A177860 A177861 A177862 * A177864 A177865 A177866


KEYWORD

easy,nonn


AUTHOR

Jonathan Sondow, May 14 2010


STATUS

approved



