login
A177793
Partial sums of A054247.
1
1, 3, 9, 111, 8659, 4220403, 8594777715, 70377477369459, 2305913405481561715, 302233760834929839713907, 158456627262298939528655810163, 332307157402856267706609817833582195
OFFSET
0,2
COMMENTS
Partial sums of number of n X n binary matrices under action of dihedral group of the square D_4. Can this ever be prime?
FORMULA
a(n) = SUM[i=0..n] A054247(i) = SUM[i=0..n] [(1/8)*(2^(i^2)+2*2^(i^2/4)+3*2^(i^2/2)+2*2^((i^2+i)/2)) if i is even and (1/8)*(2^(i^2)+2*2^((i^2+3)/4)+2^((i^2+1)/2)+4*2^((i^2+i)/2)) if i is odd].
EXAMPLE
a(4) = 1 + 2 + 6 + 102 + 8548 = 8659 = 7 * 1237.
PROG
Contribution from R. J. Mathar, May 28 2010: (Start)
(PARI) A054247(n)={ local(a) ; if(n%2==0, a=2^(n^2)+2*2^(n^2/4)+3*2^(n^2/2)+2*2^((n^2+n)/2), a=2^(n^2)+2*2^((n^2+3)/4)+2^((n^2+1)/2)+4*2^((n^2+n)/2); ) ; return(a/8) ; }
A177793(n)={ return(sum(i=0, n, A054247(i))) ; }
{ for(n=0, 20, print1(A177793(n), ", ") ; ) ; } (End)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 13 2010
EXTENSIONS
Extended by R. J. Mathar, May 28 2010
STATUS
approved