login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177762 Beta polynomials (coefficients in descending order, triangle read by rows) 0
1, 1, 1, -1, 1, -2, -2, 1, -3, -3, 5, 1, -4, -4, 16, 16, 1, -5, -5, 35, 35, -61, 1, -6, -6, 64, 64, -272, -272, 1, -7, -7, 105, 105, -791, -791, 1385, 1, -8, -8, 160, 160, -1856, -1856, 7936, 7936, 1, -9, -9, 231, 231, -3801, -3801, 28839, 28839, -50521 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

beta_n(x) = sum_{k=0..n-1} C(n,k)b(-k)(z-1)^(n-k-1) for n > 0 and beta_0(x)=1. Here b(s) = 2*4^(-s)(zeta(s,1/4)-zeta(s,3/4)) where zeta(s,t) denotes the Hurwitz zeta function.

beta_n(0) are the signed Euler numbers 1,1,-1,-2,5,16,-61,... The sign pattern is the same as in the egf. tanh + sech.

LINKS

Table of n, a(n) for n=0..55.

Eric Weisstein's World of Mathematics, Dirichlet Beta Function

Peter Luschny, Swiss-Knife polynomials and Euler numbers, Blog on OEIS

EXAMPLE

1

1

z - 1

z^2 - 2 z - 2

z^3 - 3 z^2 - 3 z + 5

z^4 - 4 z^3 - 4 z^2 + 16 z + 16

z^5 - 5 z^4 - 5 z^3 + 35 z^2 + 35 z - 61

MAPLE

beta := proc(n, z) option remember; local k;

if n = 0 then 1 else add(`if`(k mod 2 = 1, 0,

binomial(n, k)*beta(k, 0)*(z-1)^(n-k-1)), k=0..n-1) fi end:

CROSSREFS

Cf. A000111

Sequence in context: A200779 A023990 A117894 * A109380 A167754 A011020

Adjacent sequences:  A177759 A177760 A177761 * A177763 A177764 A177765

KEYWORD

easy,sign,tabf

AUTHOR

Peter Luschny, May 13 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 07:15 EST 2016. Contains 278841 sequences.