This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177753 G.f.: A(x) = exp( Sum_{n>=1} (n+1)*A177752(n)*x^n/n - x ). 1
 1, 1, 2, 11, 140, 3102, 102713, 4698780, 283041208, 21704073515, 2064570182438, 238616651727324, 32939304929679337, 5353248306115060288, 1011770777921642230227, 220048666117424880696401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let G(x) = g.f. of A177752, then A177752 is defined by: . A177752(n) = [x^n] G(x)^n/(n+1) for n>1. LINKS FORMULA G.f. satisfies: 1+x + x*A'(x)/A(x) = d/dx x^2/Series_Reversion(x*A(x)). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 3102*x^5 +... Compare the series S(x) = d/dx x^2/Series_Reversion(x*A(x)): S(x) = 1 + 2*x + 3*x^2 + 28*x^3 + 515*x^4 + 14766*x^5 + 596652*x^6 +... to the logarithmic derivative: A'(x)/A(x) = 1 + 3*x + 28*x^2 + 515*x^3 + 14766*x^4 + 596652*x^5 +... and also to the g.f. G(x) of A177752: G(x) = 1 + x + x^2 + 7*x^3 + 103*x^4 + 2461*x^5 + 85236*x^6 +... PROG (PARI) {a(n)=local(A=1+x+sum(m=2, n-1, a(m)*x^m)); A=(1/x)*serreverse(x^2/intformal(1+x+x*deriv(A)/(A+x*O(x^n)))); if(n<0, 0, if(n<2, 1, polcoeff((n+1)*A, n)))} CROSSREFS Cf. A177752. Sequence in context: A077544 A087480 A060059 * A183609 A113148 A193209 Adjacent sequences:  A177750 A177751 A177752 * A177754 A177755 A177756 KEYWORD nonn AUTHOR Paul D. Hanna, May 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 25 04:19 EDT 2013. Contains 225638 sequences.