login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177706 Period 5: repeat [1, 1, 1, 1, 2]. 4
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Continued fraction expansion of (5+sqrt(65))/8.

Decimal expansion of 3704/33333.

a(n) = A130782(n+3).

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = a(n-5) for n > 4; a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 1, a(4) = 2.

G.f.: (1+x+x^2+x^3+2*x^4)/(1-x^5).

a(n) = 2-((n+1)^4 mod 5). - Paolo P. Lava, Jul 02 2010

a(n+4) = A198517(n+2) + A198517(n+1) + A198517(n). - Bruno Berselli, Nov 02 2011

a(n) = floor((n+1)*6/5) - floor((n)*6/5). - Hailey R. Olafson, Jul 23 2014

a(n) = (2/5)*(3 + cos(4*(n-4)*Pi/5) + cos(2*(n+1)*Pi/5)). - Wesley Ivan Hurt, Oct 05 2018

MAPLE

A177706:=n->floor(6*(n+1)/5)-floor(6*n/5): seq(A177706(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014

MATHEMATICA

Table[Floor[6 (n + 1)/5] - Floor[6 n/5], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 24 2014 *)

PROG

(MAGMA) &cat[ [1, 1, 1, 1, 2]: k in [1..21] ];

CROSSREFS

Cf. A130782 (repeat 1, 1, 2, 1, 1), A177707 (decimal expansion of (5+sqrt(65))/8).

Sequence in context: A216915 A280569 A140345 * A130782 A055457 A277873

Adjacent sequences:  A177703 A177704 A177705 * A177707 A177708 A177709

KEYWORD

nonn,cofr,easy

AUTHOR

Klaus Brockhaus, May 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 01:55 EDT 2020. Contains 336476 sequences. (Running on oeis4.)