This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177702 Period 3: repeat [1, 1, 2]. 3
 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Continued fraction expansion of (2+sqrt(10))/3. Decimal expansion of 112/999. a(n) = A131534(n+2) = |A132419(n)| = |A132367(n)| = |A131556(n+2)|= |A122876(n)|. LINKS Index entries for linear recurrences with constant coefficients, signature (0, 0, 1). FORMULA a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 1, a(2) = 2. G.f.: (1+x+2*x^2)/(1-x^3). a(n) = 2-((n+1)^2 mod 3). - Paolo P. Lava, Jul 02 2010 a(n) = 4/3 - cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011 a(n) = 1 + A022003(n). - Wesley Ivan Hurt, Jul 01 2016 MAPLE seq(op([1, 1, 2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016 MATHEMATICA PadRight[{}, 120, {1, 1, 2}] (* or *) LinearRecurrence[{0, 0, 1}, {1, 1, 2}, 120] (* Harvey P. Dale, Dec 19 2014 *) PROG (MAGMA) &cat[ [1, 1, 2]: k in [1..35] ]; (PARI) a(n)=max(n%3, 1) \\ Charles R Greathouse IV, Jul 17 2016 CROSSREFS Cf. A022003, A131534, A177703. Sequence in context: A132367 A087204 A101825 * A131534 A061347 A115579 Adjacent sequences:  A177699 A177700 A177701 * A177703 A177704 A177705 KEYWORD cofr,nonn,easy AUTHOR Klaus Brockhaus, May 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:39 EDT 2019. Contains 328292 sequences. (Running on oeis4.)