OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
FORMULA
a(n) = 2*4^(n+5)+6083*2^(n-1)-1 for n > 2.
G.f.: (179+318*x+4020*x^2+88388*x^3-352284*x^4+259376*x^5) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(3): x^3*(155403-514870*x+359464*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
MATHEMATICA
Join[{179, 1571, 12511}, LinearRecurrence[{7, -14, 8}, {155403, 572951, 2194479}, 20]] (* Harvey P. Dale, Oct 06 2011 *)
CoefficientList[Series[(179 + 318 x + 4020 x^2 + 88388 x^3 - 352284 x^4 + 259376 x^5)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
PROG
(PARI) {m=19; v=concat([179, 1571, 12511, 155403, 572951], vector(m-5)); for(n=6 , m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
(Magma) [179, 1571, 12511] cat [2*4^(n+5)+6083*2^(n-1)-1: n in [3..25]]; // Vincenzo Librandi, Sep 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 12 2010
STATUS
approved