login
Number of permutations of 2 copies of 1..n avoiding adjacent step pattern up, up, up, up, up, up.
3

%I #17 Mar 12 2021 19:30:23

%S 1,1,6,90,2520,113400,7484400,681040081,81715496353,12500505087678,

%T 2374643401938450,548423992273068450,151329242873227786290,

%U 49169594830177508466780,18581179389079670034395725,8080585890092465008705929001,4006831811683726939901512184106

%N Number of permutations of 2 copies of 1..n avoiding adjacent step pattern up, up, up, up, up, up.

%H Mingjia Yang and Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.

%H Mingjia Yang, <a href="https://doi.org/10.7282/t3-d9z1-aw94">An experimental walk in patterns, partitions, and words</a>, Ph. D. Dissertation, Rutgers University (2020).

%Y Cf. A177558, A177564, A177574.

%K nonn

%O 0,3

%A _R. H. Hardin_, May 10 2010

%E a(12)-a(14) from _Alois P. Heinz_, Nov 01 2013

%E a(0), a(15)-a(16) from _Alois P. Heinz_, Aug 08 2018