

A177516


Numbers n = p*q such that p and q are primes and (p1) divides (q1).


3



15, 21, 33, 39, 51, 57, 65, 69, 85, 87, 91, 93, 111, 123, 129, 133, 141, 145, 159, 177, 183, 185, 201, 205, 213, 217, 219, 237, 249, 259, 265, 267, 291, 301, 303, 305, 309, 321, 327, 339, 341, 365, 381, 393, 411, 417, 427, 445, 447, 451, 453, 469, 471, 481
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Neither p nor q can equal 2, i.e., 2 is not a permissible prime here.  Harvey P. Dale, May 04 2011


LINKS

Table of n, a(n) for n=1..54.


EXAMPLE

(3  1) divides (5  1), so 3 * 5 = 15 is in this sequence.
(5  1) divides (17  1) so 5 * 17 = 85 is in this sequence.
(5  1) does not divide (19  1), so 5 * 19 = 95 is not in this sequence.


MATHEMATICA

Table[If[i < j && IntegerQ[(Prime[j]  1)/(Prime[i]  1)], Prime[j] * Prime[i]], {i, 2, 100}, {j, 2, 100}] // Flatten // Union
Union[Times@@@Select[Subsets[Prime[Range[2, 100]], {2}], Divisible[Last[#]  1, First[#]  1] &]] (* Harvey P. Dale, May 04 2011 *)


CROSSREFS

Sequence in context: A198680 A300117 A214044 * A127329 A099610 A043326
Adjacent sequences: A177513 A177514 A177515 * A177517 A177518 A177519


KEYWORD

nonn


AUTHOR

José María Grau Ribas, Dec 11 2010


STATUS

approved



