%I #15 Nov 04 2019 02:21:38
%S 1,1,1,1,2,1,3,2,3,2,5,2,6,4,4,5,8,4,9,4,6,6,11,4,10,8,10,7,14,6,15,
%T 11,10,12,12,8,18,12,13,10,20,8,21,12,15,16,23,13,21,16,19,15,26,15,
%U 21,15,21,22,29,13,30,26,21,24,25,18,33,21,25,19,35,18,36,26,24,23,31,19,39,23
%N The number of entries in row n of table A174625 which are multiples of n.
%C n is prime iff a(n) = floor(n/2).
%C For n >= 2, a(n) is the number of integers of the form binomial(n-k-1, k-1)/k, k=1..floor(n/2). - _Vladimir Shevelev_, Aug 18 2013
%H Peter J. C. Moses, <a href="/A177501/b177501.txt">Table of n, a(n) for n = 1..2000</a>
%F For n >= 2, a(n) >= A000010(n)/2. Equality holds when n is odd prime.
%e In the fifth row, 5 and 5 are both multiples of 5, so a(5)=2.
%t p[0]:=0; p[1]:=2; p[n_]:=p[n]=Expand[p[n-1] +x p[n-2]+1]; Flatten[{1,Table[Count[CoefficientList[p[n]/(n+1) ,x],_Integer],{n,50}]}] (* _Peter J. C. Moses_, Aug 20 2013 *)
%Y Cf. A174625, A221533.
%K nonn
%O 1,5
%A _Vladimir Shevelev_, May 10 2010
%E Definition shortened, more terms added by _R. J. Mathar_, Nov 01 2010