login
A177499
Period 4: repeat [1, 16, 4, 16].
4
1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16, 1, 16, 4, 16
OFFSET
0,2
COMMENTS
From Klaus Brockhaus, May 14 2010: (Start)
Interleaving of A000012, A010855, A010709 and A010855.
Continued fraction expansion of (44+sqrt(2442))/88. (End)
FORMULA
From Klaus Brockhaus, May 14 2010: (Start)
a(n+2) - a(n) = A010674(n).
a(n) = a(n-4) for n > 3.
G.f.: (1+16*x+4*x^2+16*x^3)/(1-x^4). (End)
a(n) = A176895(n)^2. - Paul Curtz, Mar 21 2011
a(n) = (37 - 6*cos(n*Pi/2) - 27*cos(n*Pi) - 27*I*sin(n*Pi))/4. - Wesley Ivan Hurt, Jul 09 2016
MAPLE
seq(op([1, 16, 4, 16]), n=0..50); # Wesley Ivan Hurt, Jul 09 2016
MATHEMATICA
Table[{1, 16, 4, 16}, {21}] // Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Magma) &cat[[1, 16, 4, 16]^^26]; // Klaus Brockhaus, May 14 2010
CROSSREFS
Cf. A010674, A177838. [Klaus Brockhaus, May 14 2010]
Sequence in context: A018814 A307407 A234288 * A331227 A040247 A245826
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 10 2010
STATUS
approved