login
A177463
The smallest k such that Catalan(n)+k and Catalan(n)-k are both prime.
1
0, 3, 1, 5, 10, 3, 69, 33, 45, 45, 9, 47, 86, 97, 97, 41, 19, 49, 191, 11, 101, 283, 1, 69, 597, 549, 1341, 243, 552, 121, 157, 115, 1341, 1905, 165, 597, 27, 87, 31, 731, 1093, 449, 127, 37, 37, 157, 1145, 587, 317, 659, 1523, 487, 865, 4879, 463, 1351, 4471
OFFSET
3,2
FORMULA
a(n) = A047160(A000108(n)). - R. J. Mathar, Jan 23 2011
EXAMPLE
5 +- 0 -> primes, 14 +- 3 -> primes, 42 +- 1 -> primes, 132 +- 5 -> primes, ...
MAPLE
A000108 := proc(n) binomial(2*n, n)/(n+1) ; end proc:
A047160 := proc(n) for k from 0 to n-1 do if isprime(n-k) and isprime(n+k) then return k; end if; end do: return -1 ; end proc:
A177463 := proc(n) A047160(A000108(n)) ; end proc:
seq(A177463(n), n=3..40) ; # R. J. Mathar, Jan 23 2011
MATHEMATICA
g[n_]:=(2n)!/n!/(n+1)!; f[n_]:=Block[{k}, If[OddQ[n], k=0, k=1]; While[ !PrimeQ[n-k]||!PrimeQ[n+k], k+=2]; k]; Table[f[g[n]], {n, 3, 4*4!}]
CROSSREFS
Sequence in context: A122366 A228781 A103327 * A065229 A233037 A376726
KEYWORD
nonn
AUTHOR
STATUS
approved