login
Partial sums of A079062.
0

%I #6 Jun 22 2021 14:43:18

%S 2,13,32,55,86,133,212,295,506,733,996,1267,1574,1885,2232,2611,2994,

%T 3413,3960,4523,5094,5681,6300,6983,7674,8401,9144,9895,10682,11505,

%U 12332,13191,14054,15045,16136,17259,18446,19669,20900,22327,23786

%N Partial sums of A079062.

%C Partial sums of a(1) = 2; for n > 1, a(n) = smallest prime p such that p - a(n-1) = a^b for some positive integers a,b > 1. The subsequence of primes in the partial sums begins: 2, 13, 733, 3413, 4523, 6983.

%F a(n) = Sum_{i=1..n} A079062(i).

%e a(20) = 2 + 11 + 19 + 23 + 31 + 47 + 79 + 83 + 211 + 227 + 263 + 271 + 307 + 311 + 347 + 379 + 383 + 419 + 547 + 563 = 4523 is prime.

%Y Cf. A079062.

%K nonn

%O 1,1

%A _Jonathan Vos Post_, May 09 2010

%E More terms from _R. J. Mathar_, May 24 2010