login
A177447
G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2) = 1+x.
10
1, 1, 1, 3, 18, 172, 2313, 40626, 887326, 23282964, 715540140, 25259729071, 1008721104654, 45008479039824, 2221170817590696, 120209722115431950, 7083266027910364710, 451620678137942740132, 30990400538494184551692, 2277988537997377457967690, 178626191260072536476398000
OFFSET
0,4
COMMENTS
Column 1 of triangle A215241.
LINKS
FORMULA
a(n) = number of subpartitions of the partition [0,0,2,6,12,...,(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.
Generating functions:
(1) 1 + x = Sum_{n>=0} a(n) * x^n / (1+x)^(n^2).
(2) 1/(1-x) = Sum_{n>=0} a(n) * x^n * (1-x)^(n*(n-1)). - Paul D. Hanna, Apr 04 2022
EXAMPLE
1+x = 1 + 1*x/(1+x) + 1*x^2/(1+x)^4 + 3*x^3/(1+x)^9 + 18*x^4/(1+x)^16 + 172*x^5/(1+x)^25 + 2313*x^6/(1+x)^36 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2n+1 times, starting with a '1' in row 0, as illustrated by:
1;
1, 1, 1;
1, 2, 3, 3, 3, 3, 3;
1, 3, 6, 9, 12, 15, 18, 18, 18, 18, 18, 18, 18;
1, 4, 10, 19, 31, 46, 64, 82, 100, 118, 136, 154, 172, 172, 172, 172, 172, 172, 172, 172, 172;
1, 5, 15, 34, 65, 111, 175, 257, 357, 475, 611, 765, 937, 1109, 1281, 1453, 1625, 1797, 1969, 2141, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313; ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
*(-1)^(n-j)*binomial(1 +j*(j-1), n-j), j=0..n-1))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 10 2022
PROG
(PARI) {a(n)=local(F=1/(1+x+x*O(x^n))); polcoeff(1+x-sum(k=0, n-1, a(k)*x^k*F^(k^2)), n)}
(PARI) {A=[1, 1]; for(i=1, 40, A=concat(A, -Vec(sum(n=0, #A-1, A[n+1]*x^n/(1+x+x*O(x^#A))^(n^2)))[#A+1])); for(n=0, #A-1, print1(A[n+1], ", "))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 09 2010
STATUS
approved