%I #12 Sep 08 2022 08:45:53
%S 1,1,2,1,2,77,2,1,37,1,6,1,1,1,46,3,1,1,1,1,4,2,7,1,4,1,2,1,13,1,1,1,
%T 3,2,1,1,432,1,1,1,1,3,2,10,1,1,1,18,1,1700,1,1,5,2,9,4,4,1,1,2,1,3,
%U 27,1,1,2,1,1,1,4,3,1,2,2,5,1,32,1,11,1,2,52,10,4,1,1,10,1,1,2,23,1,3,7,12,1
%N Continued fraction for Pi - sqrt(2).
%H G. C. Greubel, <a href="/A177438/b177438.txt">Table of n, a(n) for n = 0..10000</a>
%p with(numtheory): cfrac(Pi-(sqrt(2)),100,'quotients'); # _Muniru A Asiru_, Sep 29 2018
%t ContinuedFraction[Pi-Sqrt[2],100] (* _Harvey P. Dale_, Nov 06 2011 *)
%o (PARI) default(realprecision, 100); contfrac(Pi - sqrt(2)) \\ _G. C. Greubel_, Sep 29 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R) - Sqrt(2)); // _G. C. Greubel_, Sep 29 2018
%Y Cf. A177437 (decimal expansion of Pi-sqrt(2)), A001203 (continued fraction for Pi), A040000 (continued fraction expansion of sqrt(2)).
%K cofr,nonn
%O 0,3
%A Earl Bellinger (ebelling(AT)oswego.edu), May 08 2010
%E Edited and extended by _Klaus Brockhaus_, May 09 2010