login
A177389
Expansion of o.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*arctanh(x)).
2
1, 1, 2, 6, 22, 98, 514, 3110, 21334, 163650, 1388162, 12902086, 130391830, 1423632546, 16699055490, 209432697830, 2796597560150, 39613075175554, 593253347702530, 9366042608039814, 155466234198142998
OFFSET
0,3
LINKS
FORMULA
O.g.f.: A(x) = Sum_{n>=0} A002105(n+1)*arctanh(x)^n/n!, where A002105 is the reduced tangent numbers.
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^k - (1-x)^k)/((1+x)^k + (1-x)^k). - Paul D. Hanna, May 22 2010
a(n) ~ 2^(3*n+9/2) * n^(n+1) / (exp(n) * Pi^(2*n+2)). - Vaclav Kotesovec, Nov 06 2014
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 98*x^5 + 514*x^6 + ...
Let G(x) = Sum_{n>=0} A002105(n+1)*x^n/n!, so that
G(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 496*x^4/4! + 11056*x^5/5! + ...
then A(x) = G(arctanh(x)).
G.f.: 1 + x + x*(2x/(1+x^2)) + x*(2x/(1+x^2))*((3x+x^3)/(1+3x^2)) + x*(2x/(1+x^2))*((3x+x^3)/(1+3x^2))*((4x+4x^3)/(1+6x^2+x^4)) + ... - Paul D. Hanna, May 22 2010
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tanh(k*atanh(X)))); polcoeff(Egf, n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+x)^k-(1-x)^k)/((1+x)^k+(1-x)^k+x*O(x^n)))), n)} \\ Paul D. Hanna, May 22 2010
CROSSREFS
Cf. A002105.
Sequence in context: A351919 A328500 A180389 * A130907 A054096 A006183
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 15 2010
STATUS
approved