login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177380 E.g.f. satisfies: A(x) = 1+x + x*log(A(x)). 5
1, 1, 2, 3, -4, -50, -36, 2058, 10800, -131616, -1975680, 7741800, 417480480, 1307617584, -101626746144, -1284067345680, 25419094122240, 791333924647680, -3900043588999680, -472446912421801728, -3183064994777932800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The signs have a complex structure; are they periodic after some point?

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..420

FORMULA

E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ).

...

Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy:

(1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1;

(2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x));

(3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x.

...

Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy:

(4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0;

(5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x);

(6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))).

Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - Vaclav Kotesovec, Jan 11 2014

EXAMPLE

E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +...

log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +...

...

Coefficients in the initial powers of A(x) begin:

[1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...];

[1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...];

[1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...];

[1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...];

[1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...];

[1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...];

[1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...];

[1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ...

where the coefficients in parenthesis illustrate the property

that the coefficients of x^n and x^(n+1) in A(x)^n are equal:

[x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!,

where G(x) = e.g.f. of A138013 begins:

G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...

and satisfies: exp(1 - G(x)) = 1 - x*G(x).

MATHEMATICA

CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 11 2014 *)

PROG

(PARI) {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))), n)}

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x+x*log(A+O(x^n))); n!*polcoeff(A, n)}

CROSSREFS

Cf. A177379, A138013, A038037, A238274.

Sequence in context: A235495 A257482 A023167 * A282034 A096782 A098811

Adjacent sequences:  A177377 A177378 A177379 * A177381 A177382 A177383

KEYWORD

sign

AUTHOR

Paul D. Hanna, May 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.