This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177380 E.g.f. satisfies: A(x) = 1+x + x*log(A(x)). 5
 1, 1, 2, 3, -4, -50, -36, 2058, 10800, -131616, -1975680, 7741800, 417480480, 1307617584, -101626746144, -1284067345680, 25419094122240, 791333924647680, -3900043588999680, -472446912421801728, -3183064994777932800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The signs have a complex structure; are they periodic after some point? LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..420 FORMULA E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ). ... Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy: (1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1; (2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x)); (3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x. ... Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy: (4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0; (5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x); (6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))). Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - Vaclav Kotesovec, Jan 11 2014 EXAMPLE E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +... log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +... ... Coefficients in the initial powers of A(x) begin: [1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...]; [1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...]; [1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...]; [1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...]; [1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...]; [1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...]; [1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...]; [1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ... where the coefficients in parenthesis illustrate the property that the coefficients of x^n and x^(n+1) in A(x)^n are equal: [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!, where G(x) = e.g.f. of A138013 begins: G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ... and satisfies: exp(1 - G(x)) = 1 - x*G(x). MATHEMATICA CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 11 2014 *) PROG (PARI) {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))), n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x+x*log(A+O(x^n))); n!*polcoeff(A, n)} CROSSREFS Cf. A177379, A138013, A038037, A238274. Sequence in context: A235495 A257482 A023167 * A282034 A096782 A098811 Adjacent sequences:  A177377 A177378 A177379 * A177381 A177382 A177383 KEYWORD sign AUTHOR Paul D. Hanna, May 14 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.