OFFSET
0,2
REFERENCES
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
LINKS
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs
Index entries for linear recurrences with constant coefficients, signature (6, 14, -28, 0, 8).
FORMULA
From Harvey P. Dale, May 09 2011: (Start)
G.f.: (1+12*x-24*x^2+8*x^4)/((1-8*x+4*x^2+4*x^3)*(1+2*x-2*x^2)).
a(0)=1, a(1)=18, a(2)=98, a(3)=812, a(4)=5748, a(n)=6a(n-1)+ 14a(n-2) -28a(n-3) +8a(n-5). (End)
MATHEMATICA
CoefficientList[Series[(1+12x-24x^2+8x^4)/((1-8x+4x^2+4x^3)(1+2x-2x^2)), {x, 0, 20}], x] (* or *) LinearRecurrence[{6, 14, -28, 0, 8}, {1, 18, 98, 812, 5748}, 20] (* Harvey P. Dale, May 09 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 07 2010
EXTENSIONS
Definition clarified by Harvey P. Dale, May 09 2011
STATUS
approved