login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177274 Periodic sequence: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9. 2
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Interleaving of A131669 and A131669 without first five terms.

Continued fraction expansion of (684125+sqrt(635918528029))/1033802.

Decimal expansion of 13717421/111111111.

a(n) = A010888(n+1) = A010878(n)+1 = A117230(n+2)-1.

a(n) = A064806(n+1)-n-1.

Essentially first differences of A037123.

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).

FORMULA

a(n) = (n mod 9)+1.

a(n) = a(n-9) for n > 8; 1; a(n) = n+1 for n <= 8.

G.f.: (1+2*x+3*x^2+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/(1-x^9).

PROG

(MAGMA) &cat[ [1, 2, 3, 4, 5, 6, 7, 8, 9]: k in [1..12] ];

CROSSREFS

Cf. A131669 (odd digits followed by positive even digits), A010888 (digital root of n), A010878 (n mod 9), A117230 (1 followed by (repeat 2, 3, 4, 5, 6, 7, 8, 9, 10), offset 1), A064806 (n + digital root of n), A037123, A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802).

Sequence in context: A053837 A128244 A010888 * A131650 A033930 A076314

Adjacent sequences:  A177271 A177272 A177273 * A177275 A177276 A177277

KEYWORD

cofr,easy,nonn

AUTHOR

Klaus Brockhaus, May 07 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 02:20 EST 2018. Contains 299297 sequences. (Running on oeis4.)