This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177274 Periodic sequence: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9. 3
 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Interleaving of A131669 and A131669 without first five terms. Continued fraction expansion of (684125+sqrt(635918528029))/1033802. Decimal expansion of 13717421/111111111. a(n) = A010888(n+1) = A010878(n)+1 = A117230(n+2)-1. a(n) = A064806(n+1)-n-1. Essentially first differences of A037123. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1). FORMULA a(n) = (n mod 9)+1. a(n) = a(n-9) for n > 8; 1; a(n) = n+1 for n <= 8. G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/(1-x^9). [corrected by Georg Fischer, May 11 2019] PROG (MAGMA) &cat[ [1, 2, 3, 4, 5, 6, 7, 8, 9]: k in [1..12] ]; CROSSREFS Cf. A131669 (odd digits followed by positive even digits), A010888 (digital root of n), A010878 (n mod 9), A117230 (1 followed by (repeat 2, 3, 4, 5, 6, 7, 8, 9, 10), offset 1), A064806 (n + digital root of n), A037123, A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802). Sequence in context: A053837 A128244 A010888 * A131650 A033930 A076314 Adjacent sequences:  A177271 A177272 A177273 * A177275 A177276 A177277 KEYWORD cofr,easy,nonn AUTHOR Klaus Brockhaus, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)