This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177254 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks (0 <= k <= n). An adjacent block is a block of the form (i, i+1, i+2, ...). 5
 1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 4, 6, 3, 1, 5, 13, 17, 12, 4, 1, 21, 51, 61, 44, 20, 5, 1, 91, 219, 255, 185, 90, 30, 6, 1, 422, 1019, 1182, 867, 440, 160, 42, 7, 1, 2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1, 11226, 27448, 32373, 24406, 13118, 5292, 1638, 392, 72, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row n contains n+1 entries. Sum of entries in row n = A000110(n) (the Bell numbers). T(n,0)=A168444(n). Sum(k*a(n,k),k=0..n) = A177255(n). LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA The row generating polynomial P[n](t) is given by P[n](t)=Q[n](1,t,t), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du)_{w=v} + u(dQ[n-1]/dv)_{w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that are not adjacent, v marks adjacent blocks not ending with n, and w marks adjacent blocks ending with n. EXAMPLE T(4,2)=6 because we have 1-234, 12-34, 123-4, 13-2-4, 14-2-3, and 1-24-3. Triangle starts: 1; 0,1; 0,1,1; 0,2,2,1; 1,4,6,3,1; 5,13,17,12,4,1; 21,51,61,44,20,5,1; MAPLE Q := 1: for n to 10 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 10 do P[n] := sort(expand(subs({v = t, w = t, u = 1}, Q[n]))) end do; for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form CROSSREFS Cf. A000110, A168444, A177255, A177256, A177257. Sequence in context: A284992 A191687 A322190 * A132311 A254414 A199802 Adjacent sequences:  A177251 A177252 A177253 * A177255 A177256 A177257 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)