login
A177226
Triangle read by rows: T(n, k) = 2^(prime(n) - prime(k)) mod prime(n), 1 <= k <= n.
8
1, 2, 1, 3, 4, 1, 4, 2, 4, 1, 6, 3, 9, 5, 1, 7, 10, 9, 12, 4, 1, 9, 13, 16, 4, 13, 16, 1, 10, 5, 6, 11, 9, 7, 4, 1, 12, 6, 13, 9, 2, 12, 18, 16, 1, 15, 22, 20, 5, 13, 25, 7, 9, 6, 1, 16, 8, 2, 16, 1, 8, 16, 4, 8, 4, 1, 19, 28, 7, 11, 3, 10, 33, 36, 30, 34, 27, 1, 21, 31, 18, 25, 40, 10, 16, 4, 31, 37, 40, 16, 1
OFFSET
1,2
FORMULA
From G. C. Greubel, Apr 09 2024: (Start)
T(n, 1) = A111333(n).
T(n, 2) = A292411(n). (End)
EXAMPLE
Triangle begins:
1;
2, 1;
3, 4, 1;
4, 2, 4, 1;
6, 3, 9, 5, 1;
7, 10, 9, 12, 4, 1;
9, 13, 16, 4, 13, 16, 1;
10, 5, 6, 11, 9, 7, 4, 1;
12, 6, 13, 9, 2, 12, 18, 16, 1;
MATHEMATICA
Flatten[Table[PowerMod[2, Prime[n]-Prime[k], Prime[n]], {n, 20}, {k, n}]] (* Harvey P. Dale, May 10 2014 *)
PROG
(Magma)
A177226:= func< n, k | Modexp(2, NthPrime(n) - NthPrime(k), NthPrime(n)) >;
[A177226(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 09 2024
(SageMath)
def A177226(n, k): return pow(2, nth_prime(n) - nth_prime(k), nth_prime(n))
flatten([[A177226(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Apr 09 2024
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Corrected by D. S. McNeil, Dec 10 2010
STATUS
approved