login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177180 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=-1. 0
1, 10, 21, 144, 711, 4747, 29767, 205078, 1409645, 10043729, 72216773, 528438373, 3903255409, 29138576719, 219209569841, 1661343858524, 12668020020047, 97135000445375, 748428139988567, 5792032911677831, 45000447097568843 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).

Conjecture: (n+1)*a(n) +(2-7*n)*a(n-1) +3*(17-7*n)*a(n-2) +(91*n-278)*a(n-3) +4*(101-25*n)*a(n-4) +36*(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012

MAPLE

l:=-1: : k := 1 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30): od;

CROSSREFS

Cf. A177179.

Sequence in context: A133163 A242831 A177131 * A275248 A041833 A153317

Adjacent sequences:  A177177 A177178 A177179 * A177181 A177182 A177183

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, May 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:41 EST 2020. Contains 331066 sequences. (Running on oeis4.)