login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177167 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=0 and l=-1. 0
1, 10, 19, 137, 653, 4406, 27077, 185856, 1259601, 8898900, 63225681, 457994141, 3345121235, 24706965674, 183830383235, 1378149812989, 10393740091309, 78828658428280, 600737927801161, 4598286755156991, 35334943369372359 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-1).

Conjecture: (n+1)*a(n) +2(1-3n)*a(n-1) +(59-27n)*a(n-2) +4(18n-55)*a(n-3) +40(4-n)*a(n-4)=0. - R. J. Mathar, Nov 27 2011

EXAMPLE

a(2)=2*1*10-1=19. a(3)=2*1*19+100-1=137.

MAPLE

l:=-1: : k := 0 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30): od;

CROSSREFS

Sequence in context: A220005 A253213 A177203 * A073222 A110463 A121725

Adjacent sequences:  A177164 A177165 A177166 * A177168 A177169 A177170

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, May 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 20:16 EDT 2015. Contains 261164 sequences.