login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177131 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=0 and l=1. 0
1, 10, 21, 143, 707, 4716, 29579, 203622, 1399099, 9961582, 71585287, 523465627, 3864076389, 28826865756, 216722056701, 1641392860951, 12507535829603, 95839985593950, 737953189846751, 5707113130311621, 44310704176742745 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).

Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-27*n+59)*a(n-2) +64*(n-3)*a(n-3) +32*(-n+4)*a(n-4)=0. - R. J. Mathar, Jul 24 2012

EXAMPLE

a(2)=2*1*10+1=21. a(3)=2*1*21+100+1=143.

MAPLE

l:=1: : k := 0 : m :=10: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);

CROSSREFS

Cf. A177130.

Sequence in context: A121807 A133163 A242831 * A177180 A275248 A041833

Adjacent sequences:  A177128 A177129 A177130 * A177132 A177133 A177134

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, May 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 09:21 EST 2019. Contains 329877 sequences. (Running on oeis4.)