login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177129 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=8, k=0 and l=1. 1
1, 8, 17, 99, 471, 2816, 16535, 103942, 661447, 4327566, 28698915, 193214427, 1314753729, 9035450112, 62597834193, 436806174807, 3066961374135, 21653065678706, 153619938907211, 1094646596551549, 7830810922793173 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).

Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-19*n+43)*a(n-2) +48*(n-3)*a(n-3) +24*(-n+4)*a(n-4)=0. - R. J. Mathar, Jun 14 2016

EXAMPLE

a(2)=2*1*8+1=17. a(3)=2*1*17+64+1=99.

MAPLE

l:=1: : k := 0 : m :=8: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);

CROSSREFS

Cf. A177128.

Sequence in context: A228684 A171065 A134790 * A177178 A097405 A192282

Adjacent sequences:  A177126 A177127 A177128 * A177130 A177131 A177132

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, May 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)