login
A177083
A006093(k)-fold repetition of A001248(k), k=1,2,3,..
0
4, 9, 9, 25, 25, 25, 25, 49, 49, 49, 49, 49, 49, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169
OFFSET
1,1
COMMENTS
Consider the initial terms of numerator sequences (dropping initial zeros) of
3; A005563=N(1) ,
5,3; A061037=N(2) ,
7,16,1; A061039=N(3) ,
9,5,33,3; A061041=N(4) ,
11,24,39,56,3; A061043=N(5) ,
13,7,5,4,85,1; A061045=N(6) ,
15,32,51,72,95,120,3; A061047=N(7) ,
17,9,57,5,105,33,161,3; A061049=N(8) ,
19,40,7,88,115,16,175,208,1; N(9),
21,11,69,6,1,39,189,14,261,3; N(10),
23,48,75,104,135,168,203,240,279,320,3; N(11)
One must add the following associated (minimum) squares (taken from squared entries in A172038) to these values to reach the next possible square not larger than the entry itself:
1; N(1)
4,1; N(2)
9,9,0; N(3)
16,4,16,1; N(4)
25,25,25,25,1; N(5)
36,9,4,0,36,0; N(6)
49,49,49,49,49,49,1; N(7)
64,16,64,4,64,16,64,1, ; N(8)
Only if the index of N(.) is a prime we obtain a string of equal consecutive terms in these complementary rows: 4, 9, 25, 49, 121, 169..
The current sequence lists the consecutive complementary squares, A001248, in the rows with prime index, including their multiplicity (which is A006093).
This generates a link between the primes and the Rydberg-Ritz spectrum of the hydrogen atom.
CROSSREFS
Sequence in context: A298816 A095873 A141801 * A081949 A091657 A156047
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 09 2010
STATUS
approved