This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176983 Primes p such that smallest prime q > p^2 is of form q = p^2 + k^2. 5
 2, 5, 7, 13, 17, 37, 47, 67, 73, 97, 103, 137, 163, 167, 193, 233, 277, 281, 293, 307, 313, 317, 347, 373, 389, 421, 439, 461, 463, 487, 499, 503, 547, 571, 577, 593, 607, 613, 661, 677, 691, 701, 739, 743, 769, 787, 821, 823, 827, 829, 853, 883, 953, 967, 983 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS By Fermat's 4n+1 theorem, q must be congruent to 1 (mod 4). Corresponding values of k: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 6, 2, 2, 4, 2. - Zak Seidov, Nov 04 2013 LINKS Eric W. Weisstein, Fermat's 4n+1 Theorem EXAMPLE 17 is here because 293 is the first prime after 17^2 and 293 = 17^2 + 2^2. MATHEMATICA Select[Prime[Range[200]], IntegerQ[Sqrt[NextPrime[ #^2] - #^2]] & ] CROSSREFS Cf. A000040, A000290, A002144, A159828. A062324 is subsequence. - Zak Seidov, Nov 04 2013 Sequence in context: A260388 A169586 A023229 * A160676 A169690 A144300 Adjacent sequences:  A176980 A176981 A176982 * A176984 A176985 A176986 KEYWORD nonn AUTHOR Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 30 2010 EXTENSIONS Edited and extended by T. D. Noe, May 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.