login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176983 Primes p such that smallest prime q > p^2 is of form q = p^2 + k^2. 5
2, 5, 7, 13, 17, 37, 47, 67, 73, 97, 103, 137, 163, 167, 193, 233, 277, 281, 293, 307, 313, 317, 347, 373, 389, 421, 439, 461, 463, 487, 499, 503, 547, 571, 577, 593, 607, 613, 661, 677, 691, 701, 739, 743, 769, 787, 821, 823, 827, 829, 853, 883, 953, 967, 983 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

By Fermat's 4n+1 theorem, q must be congruent to 1 (mod 4).

Corresponding values of k: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 6, 2, 2, 4, 2. - Zak Seidov, Nov 04 2013

LINKS

Table of n, a(n) for n=1..55.

Eric W. Weisstein, Fermat's 4n+1 Theorem

EXAMPLE

17 is here because 293 is the first prime after 17^2 and 293 = 17^2 + 2^2.

MATHEMATICA

Select[Prime[Range[200]], IntegerQ[Sqrt[NextPrime[ #^2] - #^2]] & ]

CROSSREFS

Cf. A000040, A000290, A002144, A159828.

A062324 is subsequence. - Zak Seidov, Nov 04 2013

Sequence in context: A260388 A169586 A023229 * A160676 A169690 A144300

Adjacent sequences:  A176980 A176981 A176982 * A176984 A176985 A176986

KEYWORD

nonn

AUTHOR

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 30 2010

EXTENSIONS

Edited and extended by T. D. Noe, May 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.